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10. KRUSKAL’S ALGORITHM FOR FINDING A MINIMAL SPANNING TREE

To read:
[1] 9.1. Finding the best tree
[3] 5.4. Minimum spanning tree problem

10.1. Subgraphs, induced subgraphs, and spanning trees.

Definition 10.1. Let G and G’ be graphs. We say that G is a subgraph of G' if V(G) C V(G’)
and F(G) C E(G’'). We say that G is an induced subgraph of G’ if V(G) C V(G’) and
EG) = EG)n (V).

Definition 10.2. Let G = (V, F) be a graph. We say that a tree T is a spanning tree of G if it

contains all the vertices of V' and is a subgraph of GG, that is every edge in the tree belongs to
the graph G.

Example. Below is an example of a spanning tree:
°

10.2. Weighted graphs.

Definition 10.3. A weighted graph is a graph in which each edge is given a numerical weight.
We define the weight of a graph as the sum of the weights of all its edges.

We are interested in the following problem: find a minimum weight spanning tree T for a
given weighted connected graph G.
Example. A minimum weight spanning tree in a weighted connected graph.

One way to solve the problem of finding a minimum spanning tree is using Kruskal’s algorithm.
This works as follows:

Step 1. Start with an empty graph.

Step 2. Take all the edges that have not been selected and that would not create a cycle with
the already selected edges and select it unless it creates a cycle. Add the one with the
smallest weight.

Step 3. Repeat until the graph is connected.
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Theorem 10.4. (Correctness of Kruskal’s algorithm). The Kruskal’s algorithm solves
the minimum spanning tree problem.

Proof. The proof can be found in [1] Chapter 9.1. [
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